Open-Source Climate Modeling for Solar and Wind Energy Estimation: Validation with SAM Data and Experimental Measurements

Main Article Content

Osama Abdelkawi

Abstract

This study assesses the performance of an open-source model in predicting environmental parameters, with a particular focus on bias as the primary evaluation metric. The predictions generated by the current code output are compared with observed data and results from the System Advisor Model (SAM), which utilizes Typical Meteorological Year (TMY) data for the Al-Baha region. The findings reveal that the current code output generally exhibits lower biases across most parameters compared to SAM, underscoring its reliability and adaptability.


For temperature, the current code output shows a bias of -4.62 compared to SAM's -2.01, with both models underestimating. In the case of relative humidity, the current code output demonstrates a bias of 7.59, slightly higher than SAM's 7.14, indicating comparable alignment with actual data. Regarding pressure, the current code output exhibits a bias of 8.51, which is somewhat larger than SAM's 2.79, though both remain within acceptable accuracy. For wind speed, the bias of the current code output is 0.82, higher than SAM's 0.47, with both models slightly overestimating. In contrast, for wind direction, the current code output achieves a substantially smaller bias of 17.35 compared to SAM's 37.78. For direct normal irradiance (DNI), the Current Code Output has a bias of -9.11, reflecting a minor underestimation, whereas SAM significantly overestimates with a bias of 44.85. The open-source nature of the current code presents considerable potential for further refinement. Its customizable and adaptable framework allows for recalibration to specific datasets, fostering continuous improvements in accuracy. By addressing biases in temperature and pressure, the model could evolve into a highly reliable and precise tool for environmental parameter prediction. Its flexibility supports collaborative development, making it a robust and viable alternative to SAM's TMY-based data for modeling in the Al-Baha region.

Article Details

How to Cite
Open-Source Climate Modeling for Solar and Wind Energy Estimation: Validation with SAM Data and Experimental Measurements. (2025). International Journal of Management and Data Analytics, 5(1), 89-97. http://ijmada.com/index.php/ijmada/article/view/69
Section
Regular Paper

How to Cite

Open-Source Climate Modeling for Solar and Wind Energy Estimation: Validation with SAM Data and Experimental Measurements. (2025). International Journal of Management and Data Analytics, 5(1), 89-97. http://ijmada.com/index.php/ijmada/article/view/69

References

Abdullah-Al-Mahbub, M., & Islam, A. R. M. T. J. H. (2023). Current status of running renewable energy in Bangladesh and future prospect: A global comparison. 9(3).

AlGhamdi, S. A. (2024). Analysis of the Economic Feasibility of Renewable Energy (Wind and Solar Energies) in Al-Baha Region (MOE-BU-8-2020). Retrieved from Deputyship for Research & Innovation, Ministry of Education in Saudi Arabia:

Ångström, A. J. T. (1961). Techniques of Determinig the Turbidity of the Atmosphere. 13(2), 214-223.

Atems, B., & Hotaling, C. J. E. P. (2018). The effect of renewable and nonrenewable electricity generation on economic growth. 112, 111-118.

Bird, R. E., & Hulstrom, R. L. (1981). Simplified clear sky model for direct and diffuse insolation on horizontal surfaces. Retrieved from

Blair, N., DiOrio, N., Freeman, J., Gilman, P., Janzou, S., Neises, T., & Wagner, M. (2018). System advisor model (SAM) general description (Version 2017.9. 5). Retrieved from

Bolton, D. J. M. w. r. (1980). The computation of equivalent potential temperature. 108(7), 1046-1053.

Burton, T., Jenkins, N., Sharpe, D., & Bossanyi, E. (2011). Wind energy handbook: John Wiley & Sons.

da Guarda, E. L. A., Domingos, R. M. A., Jorge, S. H. M., Durante, L. C., Sanches, J. C. M., Leao, M., . . . Society. (2020). The influence of climate change on renewable energy systems designed to achieve zero energy buildings in the present: A case study in the Brazilian Savannah. 52, 101843.

Duffie, J. A., & Beckman, W. A. (1980). Solar engineering of thermal processes: Wiley New York.

Duffie, J. A., Beckman, W. A., & Blair, N. (2020). Solar engineering of thermal processes, photovoltaics and wind: John Wiley & Sons.

Georgilakis, P. S., & Hatziargyriou, N. D. J. I. T. o. p. s. (2013). Optimal distributed generation placement in power distribution networks: models, methods, and future research. 28(3), 3420-3428.

Gueymard, C. A. J. S. E. (2003). Direct solar transmittance and irradiance predictions with broadband models. Part I: detailed theoretical performance assessment. 74(5), 355-379.

Handoyo, E. A., & Ichsani, D. J. E. P. (2013). The optimal tilt angle of a solar collector. 32, 166-175.

Hartmann, D. L. (2015). Global physical climatology (Vol. 103): Newnes.

Holton, J. J. I. g. s. (1992). An introduction to dynamic meteorology. 48, 1-497.

Hyland, R. W., & Wexler, A. (1983). FORMULATIONS FOR THE THERMODYNAMIC PROPERTIES OF THE SATURATED PHASES OF H2O FROM 173.15 TO 473.15 K.

Jacobson, M. Z., & Delucchi, M. A. J. E. p. (2011). Providing all global energy with wind, water, and solar power, Part I: Technologies, energy resources, quantities and areas of infrastructure, and materials. 39(3), 1154-1169.

Janić, Z. I. (2001). Nonsingular implementation of the Mellor-Yamada level 2.5 scheme in the NCEP Meso model.

Kalogirou, S. A. (2023). Solar energy engineering: processes and systems: Elsevier.

Kasten, F., & Young, A. T. J. A. o. (1989). Revised optical air mass tables and approximation formula. 28(22), 4735-4738.

Kopp, G., & Lean, J. L. J. G. R. L. (2011). A new, lower value of total solar irradiance: Evidence and climate significance. 38(1).

Kumar, Y., Ringenberg, J., Depuru, S. S., Devabhaktuni, V. K., Lee, J. W., Nikolaidis, E., . . . Reviews, S. E. (2016). Wind energy: Trends and enabling technologies. 53, 209-224.

Lara Fanego, V. (2017). Assessment and forecasting of solar resource: applications to the solar energy industry.

Liou, H.-C. J. B. r. (2002). Regulation of the immune system by NF-κB and IκB. 35(6), 537-546.

Liu, B. Y., & Jordan, R. C. J. S. e. (1960). The interrelationship and characteristic distribution of direct, diffuse and total solar radiation. 4(3), 1-19.

McKeen, S., Wilczak, J., Grell, G., Djalalova, I., Peckham, S., Hsie, E. Y., . . . Moffet, R. J. J. o. G. R. A. (2005). Assessment of an ensemble of seven real‐time ozone forecasts over eastern North America during the summer of 2004. 110(D21).

Oke, T. R. (2002). Boundary layer climates: Routledge.

Oliphant, T. E. J. C. i. s., & engineering. (2007). Python for scientific computing. 9(3), 10-20.

PVGIS, E. J. l. A. h. r. j. e. e. e. p. t. e. P. (2018). Photovoltaic geographical information system.

Quaschning, V. (2014). Understanding renewable energy systems: Routledge.

Stull, R. B. (2012). An introduction to boundary layer meteorology (Vol. 13): Springer Science & Business Media.

Tiwari, G. N., & Dubey, S. (2009). Fundamentals of photovoltaic modules and their applications: Royal Society of Chemistry.

Van Rossum, G., & Drake, F. (2009). Python 3 Reference Manual CreateSpace Independent Publishing Platform.

Wallace, J. M., & Hobbs, P. V. (2006). Atmospheric science: an introductory survey (Vol. 92): Elsevier.

Willmott, C. J., & Matsuura, K. J. C. r. (2005). Advantages of the mean absolute error (MAE) over the root mean square error (RMSE) in assessing average model performance. 30(1), 79-82.

Zhu, J., Dong, H., Zheng, W., Li, S., Huang, Y., & Xi, L. J. A. E. (2022). Review and prospect of data-driven techniques for load forecasting in integrated energy systems. 321, 119269.